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Abstract

Knowledge distillation is a popular method for compressing large neural networks,
from large language models to computer vision models, into smaller, more effi-
cient models. However, predicting the effectiveness of a distillation for any given
teacher-student pair without incurring expensive training costs is a significant
challenge. This concept is also relevant when designing models intended to re-
sist distillation, a case common when developers try to protect their intellectual
property. To address this, we propose a theoretical framework that connects the
properties of a teacher model to the inherent difficulty of distillation. Our work is
centered on the conjecture that, under Neural Tangent Kernel (NTK) assumptions,
this difficulty is lower bounded by the distance between the teacher and student
kernel matrices. We then propose Centered Kernel Alignment (CKA) as a com-
putable proxy for this conjectured bound, based on the heuristic assumption that
representation similarity reflects the similarity of the models’ learning dynamics.
This framework offers mathematical tools to estimate the feasibility of distillation
prior to experimentation.

1 Introduction

Knowledge distillation is a foundational approach in machine learning for the dual purpose of model
compression and knowledge transfer (4; 2). The process consists of training a smaller, "student"
model to mimic the behavior of a previously trained, larger-capacity "teacher" model by having the
student learn from the teacher’s full, soft probability distributions (softened logits) over the outputs.
This is important as the soft targets provide valuable information about class-to-class relationships
and generalizing capabilities not present when using the simple ground-truth labels. This is critical
for placing state-of-the-art foundation models into deployment scenarios on devices with limited
resources, such as mobile devices and edge computing.

Though there has been significant empirical testing across many architectures (105 [115 3)), we still
have a limited theoretical understanding of why knowledge transfer works. Mathematically, we can
describe distillation as a problem in statistical learning theory, where the goal of the student network
is to create an approximation of the function learned by the teacher (6). We need to look at the
functional properties of both networks to assess their compatibility. The central theoretical questions
concern both the sample complexity of the transfer—namely what data is needed for the student to
successfully reproduce the teacher—and whether the student’s ability to approximate a teacher is
always capped by the teacher they chose.



A large divide between empirical practice and theoretical comprehension creates a substantial
bottleneck: the selection of compatible teacher-student pairs relies on heuristics and expensive,
iterative experimentation. In the face of computational cost present in today’s architectures, this is
becoming unreasonable. This leads us to the central research question of this work: can distillation
difficulty be formalized and predicted a priori? More specifically, can we provide a rigorous bound
on the sample complexity required for a successful transfer with respect to an intrinsic, computable
measure of functional and geometric divergence between the teacher and student models?

1.1 Related Work

Model compression via knowledge transfer was formalized in influential studies on knowledge
distillation (4;2). Since then, there has been extensive empirical support for its efficacy across a variety
of domains and architectures, including convolutional networks (10) and large-scale transformers
(11), as recently surveyed by (3). However, the theoretical principles underlying the conditions under
which distillation is effective are less understood. Recent work has attempted to address this gap
within the NTK framework by analyzing distillation in the infinite-width scenario, which provides a
mathematically tractable setting for analyzing the learning dynamics of deep neural networks (6).
This paper builds directly on this theoretical aspect of the literature.

Framework and Contributions

This paper provides a theoretical framework that relates the sample complexity of distillation to
the geometric distance between teacher and student models as measured by their respective kernel
matrices. Specifically, our main contributions are as follows:

* A conjecture for a lower bound on distillation error, positing that a student’s minimum
achievable error is governed by the Frobenius distance between the teacher and student
Neural Tangent Kernels (NTKs) (Theorem[4.1].

* A proof establishing an exact identity between Centered Kernel Alignment (CKA) and
the geometric distance of normalized Gram matrices (Theorem§.2). This provides a
practical proxy for our main conjecture, under a stated heuristic assumption.

* A set of precise theoretical conjectures that extend the framework by linking distillation
difficulty to information-theoretic measures and architecture-specific properties, such as the
entropy of transformer attention patterns (Theorem [4.4] Theorem 4.6)).

2 Main Definitions

Definition 2.1 (Teacher and Student Networks). Let fr : X — Y and fs : X — ) denote the
teacher and student networks, respectively, where X C R is the input space.

Definition 2.2 (Sample Complexity Gap). For a target accuracy ¢ > 0 and confidence § > 0, the
sample complexity gap is A(e, §) = ngisin (€, 0) — Nscratch (€, 0), where ngigin is the number of samples
required for the student to match the teacher’s performance via distillation, and 7gcrch 1S the sample
complexity for training the student from scratch on true labels.

Definition 2.3 (Neural Tangent Kernel (NTK)). For a neural network f(x; 0) with parameters 6, the
NTK at initialization 6 is the n x n matrix K with entries K;; = Vg f(z;;60) - Vo f(z;;6p). We
denote the teacher and student NTKs as K and K g, respectively.

Definition 2.4 (Centered Kernel Alignment (CKA)). For representation matrices X7, Xg € R"*¢
from a teacher and student, CKA measures the similarity of their Gram matrices K = X7 X % and

Kg = XSXg. Let H =1 — %llT be the centering matrix. Then,

(HK+H, HKsH) p
CKA(X+, Xg) =
X1 Xs) = W Ry A [HRsH] ¢

where (-, -)  is the Frobenius inner product.



3 Core Assumptions

Our theoretical results are based on the following standard assumptions from statistical learning theory.
Here we give only a brief justification; more extended discussions can be found in Supplementary
Section B.

Assumption 3.1 (Neural Tangent Kernel Regime). Both teacher and student networks are sufficiently
broad to function in the NTK regime in which the kernels of both networks vary approximately
constant for the duration of the training (5). This allows analysis using kernel regression methods.

Assumption 3.2 (Feature Kernel as a Heuristic Proxy for NTK). Let KNTX be the Neural Tangent
Kernel of a network at initialization, and let K™ = X X7 be the Gram matrix derived from the
feature representations of a subnetwork. This manuscript operates under a **working heuristic**
that the geometric similarity of these two types of kernels is correlated. Specifically, we assume that
1 — CKA(Xr, Xg) serves as a practical, computable proxy for the normalized NTK distance.

Justification: This is a broad, non-standard assumption, and we are not proving its validity here,
but we find it plausible based on existing empirical research on overparameterized models. The
neural tangent kernel (NTK) describes the learning dynamics of the function being learned, under
gradient descent with the framework of initialization (55 [8). The representations learned by neural
networks, which correspond to the output of the softmax layer In p(x), that are represented by the
matrix X in this work, is determined by the learning dynamics governed by the NTK. Therefore, it
is reasonable to think that networks that learn with fundamentally different learning dynamics (i.e.,
different NTKs) will produce representations with different geometric structures (i.e., different Gram
matrices). Previous empirical studies have proposed the idea of representational similarity based
on CKA, as a measure of representational similarity relates to behavior and generalization (7). We
formalize this idea by proposing that tractable similarity of representations will be useful as a proxy
for the intractable similarity of the underlying function spaces that could be accessed through gradient
descent learning. The verification of the regimes in which this heuristic holds is an important future
work direction.

Assumption 3.3 (Bounded Outputs & Lipschitz Continuity). Teacher and student outputs are bounded,
||f(z)|| < B. The teacher function fr is L-Lipschitz. These are standard regularity conditions
ensuring that generalization bounds can be applied.

Assumption 3.4 (I.1.D. Data). Training data are drawn i.i.d. from a distribution D with bounded
support.

4 Theoretical Framework and Main Results

Our framework establishes a direct link from the similarity of teacher and student models, as measured
by their kernel matrices, to the sample complexity of distillation.

Conjecture 4.1 (Distillation Infeasibility from Kernel Distance). Under Assumptions and
3.4] we conjecture that the approximation error of the student fg with respect to the teacher fr is
lower-bounded by the Frobenius distance between their respective NTK matrices. Specifically, there
may exist a constant C4 > 0 dependent on the model architectures and data distribution such that:

155 = frliap) = Call K7 — Ks|E,

where f¢ = argmingey || f — frl r2(p) is the best-in-class student approximation. An immediate
consequence is that for any target error e, distillation is infeasible if the teacher and student are
sufficiently dissimilar, i.., if || K7 — Ks||% > ¢/C 4, no amount of data can bridge the performance

gap.

Heuristic Argument. The total expected squared error of the student decomposes into approximation
error and estimation error:

Ellfs = frlizz)) = Ifs = F§lliz(p) + /5 = Frl7z(p) +eross-term.

Estimation Error Approximation Error

The estimation error arises solely due to finite sampling and vanishes as the number of samples
n — oo. The approximation error is a real limitation based on the student’s hypothesis space Hg, as



it is a property of the set of hypotheses we consider to approximate the additive model. Because the
estimation error can only be non-negative, the total error will always be lower-bounded below the

approximation error:
Elllfs = frllizmy) = 155 = frlZ2m)-

The core of this conjecture is the posited inequality linking this function-space approximation error
to the matrix-space distance between kernels. This link is highly non-trivial. It suggests that a large
distance between the kernels, which define the geometry of the respective function spaces, implies
that the teacher function f7 € Hr is "far" from any function in the student space Hg. If this holds,
then to achieve a total error E[|| fs — fr||?] < e, it is necessary that the irreducible approximation
error is also less than e. This gives the infeasibility condition stated in the conjecture, establishing a
hard limit on distillability governed by architectural (kernel) mismatch. A rigorous proof of the core
inequality remains an open problem. O

Proposition 4.2 (CKA as a Proxy for Kernel Distance). Let K7 = X7 X} and Kg = Xs X% be
empirical Gram matrices from hidden representations. The squared Frobenius distance between the
centered and normalized Gram matrices is exactly related to their CKA value:

"o (1 - CKA(Xr, Xs))

H HKrH  HEKsH
|HKrH|r |HEKsH|F

Proof. This result follows directly from the definition of the Frobenius norm and CKA. A full proof
is provided in Supplementary Section A.1. O

Remark: In the NTK regime, empirical Gram matrices approximate the true NTK matrices. There-
fore, high CKA (a value approaching 1) indicates high similarity between the normalized kernels,
suggesting a smaller NTK distance and thus easier distillation, as per Theorem 4.

4.1 Conjectures and Future Directions

Beyond the NTK regime and for specific architectures like transformers, we propose several conjec-
tures that connect more fine-grained properties of the teacher to distillation difficulty.

Conjecture 4.3 (Approximation Error Bound from CKA). We conjecture that under certain regularity
conditions on the teacher and student network architectures, the true approximation error is directly
bounded by a function of CKA. Specifically, there may exist a constant C' such that for CKA
sufficiently close to 1:

Ifs = frlirzp) < Cy/1— CKA(Xr, Xs)

Heuristic Argument. Theoremprovides an exact identity: 2(1 — CKA) = |[Kp — Kg||%, where

K denotes a normalized, centered Gram matrix. There are two aspects associated with the main gap in
proving this hypothesis. First is the formal justification that the similarity of Gram matrices guarantees
similarity of the true NTKSs (as described in Assumption[3.2)). The second outcome is to show that
proximity for *normalized* kernels implies that the *unnormalized* kernels that govern function
approximation are also boundedly close. This step would probably require significant assumptions
regarding the kernels’ spectra since normalization loses information about scale (distance). If these
substantial gaps are crossed, the result follows. O

Conjecture 4.4 (Attention Complexity and Distillation). For transformer networks, define the
teacher’s average attention entropy as Cyn = 757 SaunH (AWR), where H(-) is the Shannon
entropy of an attention head’s probability distribution. We conjecture that higher attention complexity
correlates with increased distillation sample complexity: A(e, §) > f(Can) for some monotonically
increasing function f.

Remark 4.5 (Reasoning). This conjecture is based on the notion that high-entropy attention patterns
are less sparse, yielding more complex, distributed functional mappings over the input sequence.
These complex mappings may be more inherently difficult for a small-capacity student model to
approximate, which would in turn contribute to the approximation error, and the number of samples
needed for a student to learn such complex behavior. Conversely, teachers exhibiting "peaked" or
low-entropy attention may produce simpler more transferable input-output associations.



Conjecture 4.6 (Information-Theoretic Bound). The distillation sample complexity gap may be
lower-bounded by the gap in mutual information between the teacher’s/student’s representations and
the task labels Y:

(X7:Y) — I(Xs;Y)

log(1/€)

Ale,s) =L

for some constant C.

Proof Roadmap. This conjecture reconceptualizes distillation as a problem of information transfer.
The reasoning is that if the representations Xg of the student agent are poorer in information-
theoretic terms (e.g., capture less information about the labels Y than the representations X7 of the
teacher agent), a performance gap must happen. Providing a rigorous proof would be tedious and
likely require enabling information-theoretic generalization bounds (e.g., using Russo & Zou, Xu &
Raginsky). One would need to link the available upper bound on the generalization gap resulting
from the difference in mutual information to a corresponding sample complexity gap. This is more
speculative than other possible theoretical approaches, but is nevertheless a key angle to examine. [

5 Limitations and Future Work

5.1 Limitations

NTK Regime Assumption: The results that we have established (Theorem are limited to the
infinite-width NTK setting, and their relevance to real-world, finite-width networks in which the
kernel changes during training is an approximation. In the future, we should hope to extend these
bounds past the NTK context.

We have established results only for the infinite-width NTK regime. In finite-width networks, where
the kernel evolves during training, our results offer an approximation. Ultimately, next steps should
be to push these bounds outside the NTK setting.

Proxy Assumption: The capability of our framework to use CKA as a practical metric overly
relies on Assumption [3.2] which connects the geometry of learned representations to the NTK at
initialization. This is reasonable in overparameterized models, as features learned late in training can
remain stable, but this connection is non-trivial and not formally proven. A significant area for future
work will be to confirm the regimes where such assumption holds.

Computability: Although CKA is much more computationally efficient than computing the exact
NTK, both can still be extremely computationally expensive for large datasets (n > 10°). Therefore,
we require scalable approximation methods, such as sketching, to be useful in practice. We give the
details on computational complexity and scalable algorithms in Supplementary Section A.2.

Constants in Bounds: The constant C' in our main proposition is tied to characteristics of the data
distribution and model architecture, which may be challenging to estimate. Therefore, the highlight
of the bound is the relationship it reflects with respect to kernel distance, not getting an exact sample
number.

5.2 Future Work

This work lays a theoretical foundation for understanding distillation. Key directions for future
research include:

* Theoretical Extensions: Proving the conjectures presented (4.3] [4.6), or finding
counterexamples. Developing non-NTK-based bounds for practical, finite-width networks
is a critical next step.

* Architecture-Specific Analysis: Extending our framework to explicitly account for archi-
tectural components like convolutional layers, normalization, and residual connections.

* Empirical Validation: Rigorously testing our theoretical predictions on a wide range of
teacher-student pairs across diverse datasets. A brief plan for such experiments is outlined
in Supplementary Section C.



6 Conclusion

In this work, we have introduced a mathematically grounded framework that allows us to reason
about the hardness of knowledge distillation. By formalizing distillation hardness as a gap in sample
complexity, we derived an actionable, provable bound rooted in the Frobenius distance between
teacher and student Neural Tangent Kernels (NTKs). By assuming a link between representation
similarity and NTK similarity, we propose Centered Kernel Alignment as a useful, computable
measure for estimating distillation difficulty.

Although our best results only hold in the NTK regime, we have conjectured a series of questions
that lead to a fuller theory that captures information-theoretic and architecture-based properties.
This framework allows us to transition the field away from purely empirical determinants towards a
scientific, predictive principle for knowledge transfer in deep learning.
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Supplementary Materials

A Proofs and Computational Details

A.1 Full Proof of Proposition 4.2

Proposition A.1 (CKA as a Proxy for Kernel Distance). Let Kp = XTX% and Kg = X SXSTv be
empirical Gram matrices from hidden representations. Let H be the centering matrix. The squared

Frobenius distance between the centered and normalized Gram matrices is exactly related to their

CKA value by:
2

|[HKpH|p [[HKsH|p

=2(1 - CKA(X7,X5s))

H HEKrH HKsH
| P

Proof. This result follows directly from the definitions of the Frobenius norm and CKA. Let Kr=
HlflKﬂ and Kg = HEsH_ pe the normalized, centered Gram matrices. By construction, both

TH”IZ ||HK5HHF N R
K7 and Kg have a unit Frobenius norm, i.e., || Kr||r = 1 and ||Kg||F = 1.
By the definition of the Frobenius norm:
IK7 - Ks|# = (Kr — Ks, Kr — Ks)r
= (K7, Kr)r — 2(K7, Ks)r + (Ks, Kg)r
= [IK7|% — 2(K7, Ks)r + | K57
Since ||Kr||p = 1 and || Kg||p = 1:
|Kr — Ks|l3 = 1 - 2(Kr, Ks)p +1=2—2(Kr, Ks) F
By the definition of Centered Kernel Alignment (Theorem 2.4):
CKA (X7, Xg) = (K7, Ks)p
Substituting this back into the previous equation gives the stated identity:
IKr — Ks|7 = 2(1 — CKA(Xr, Xs))
This completes the proof. O

Remark A.2 (Connecting CKA to the NTK Bound). Proposition .| bounds distillation difficulty
using the NTK distance, while Proposition .2 relates CKA to the Gram matrix distance. To connect
these two results, we rely on Assumption which posits that the similarity of activation-based
Gram matrices is a valid proxy for the similarity of gradient-based NTKs. Thus, if a value of high
CKA is close to 1 (meaning that the normalized Gram matrices are close together), it is reasonable to
assume that the NTK distance between those definitions is also small and thus distillation may be
easier. This assumption leads to a practically estimable theoretical bound.

A.2 Computational Efficiency and Complexity

The theoretical quantities that are very important in our framework (NTK distance || K7 — Kg||r
and CKA) are not computationally efficient for large datasets. In this section we provide a formal
analysis of these costs and offer scalable approximation methods.

Exact Computation Complexity. The direct computation of our proposed diagnostics is often
infeasible. Let n be the number of samples, P the number of model parameters, and d the dimension
of hidden representations.

» NTK Matrix Construction: Computing a single entry K (z;,z;) = Vo f(z;) - Vo f(z;)
requires two Jacobian computations, each costing O(P). To construct the full n x n NTK
matrix, the total time complexity is O(n?P) and space complexity is O(n? + nP).

+ CKA Computation: For representations X € R"*¢, computing the Gram matrix K =
X X7 requires O(n2d) time and O(n?) space. CKA computation is dominated by this step.



Scalable Approximation Algorithms. For large n, we must resort to approximations. We propose
using sketching based on random projections.

* Random Projections (Sketching): Instead of materializing the full Jacobian matrix J €
R™* P we can compute a sketch J = J.S € R"*", where S € RP*" is a random projection
matrix (e.g., Gaussian) with » < n, P. The approximate kernel is then K = JJT. The
time complexity is dominated by computing the projected Jacobians, which costs O (nPr),

and forming K in O(nr?). The approximation error for | K — K| is bounded with high
probability and scales with 1/4/7.

Algorithm 1 Efficient NTK Distance and CKA Estimation via Sketching

Input: Teacher fr, Student fg, Data {x;} ;, sketch size r.
Output: Approx. NTK distance dr, Approx. CKA score c.
// NTK Distance Approximation
Sample random projection matrix Sp € RF*7.
fori =1tondo
Compute Jacobians jr; = Vg fr(x;), js: = Vofs(x:).
Project Jacobians: jr; = jr,:Sp, js,i = js,iSp-
end for o
Form sketched Jacobian matrices Jr, Jg € R™*".
Compute sketched kernels: K = JrJEX, Kg = JgJL.
drp = ||Kr — Kg||F.
// CKA Approximation (if d is large)
Get representations X7, Xg € R"¥4,
Sample random projection matrix Sy € R4¥".
Compute sketched representations: X7 = X754, Xg = XgS5y.
¢ =CKA(Xr, Xg).

B Extended Justification of Assumptions

* Assumption 3.1 (NTK Regime): This presumption is integral to our established findings.
Although contemporary networks are of finite width, there is a body of work demonstrating
that many over-parameterized models can train in a manner which is well-approximated
by the NTK theory, particularly early in the training process. Our framework provides an
expected theoretical baseline and the extent to which models deviate from the NTK regime
is an interesting direction for future work.

* Assumption 3.2 (Boundedness and Lipschitz Continuity): These are typical regularity
assumptions in learning theory. Bounded outputs can be obtained using an activation function
such as tanh or sigmoid in the output layer. Many common architectures satisfy Lipschitz
continuity, especially when combined with a technique such as spectral normalization
or gradient clipping. These conditions are required to avoid problems associated with
pathological cases where the function value or gradient may blow up, which would make
generalization impossible.

* Assumption 3.3 (I.L.D. Data): In most supervised learning contexts, this is the typical
assumption. It assures that the training data is representative of the test data, enabling the
generalization of training data to test data. Our outcomes could be generalized to non-i.i.d.
contexts (e.g., time series) but would entail different analytical tools.

C Brief Empirical Plan
While the current work is theoretical, we propose the following speculative empirical plan to validate
its predictions. We heavily stress testing assumption 3.2.

Objective: To empirically verify the correlation between our proposed metrics (NTK distance, CKA)
and the measured sample complexity gap A(e, 9).



Methodology:

1. Setup: Use a controlled setting, such as distilling a ResNet-18 teacher to a ResNet-9
student on CIFAR-10. Also, use synthetic datasets where teacher properties can be precisely
manipulated.

2. Metric Computation: Prior to distillation, calculate the CKA by layer between the ini-
tialized student and the trained teacher. Use the sketching method to calculate the NTK
distance on a subset of the data as described in Algorithm[I} For transformer models, also
compute the teacher’s average attention entropy (Catn)-

3. Measuring Sample Complexity Gap: Train multiple student models via distillation,
varying the number of training samples (n). For each n, measure the final student accuracy.
The value of n required to reach a target accuracy (e.g., 99% of teacher’s accuracy) is ngisil-
Compare this to ngacn measured by training the student on true labels.

4. Analysis: Plot the measured sample complexity gap A against the pre-computed metrics
(CKA, NTK distance, Cyy,). We would expect to see a strong positive correlation between
A and NTK distance, and a strong negative correlation between A and CKA.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim to provide a theoretical framework for
predicting distillation difficulty.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5, "Discussion of Limitations," explicitly addresses the limitation.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.



 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are based on the core assumptions listed in Section 3
and appropiate proof blocks.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper is purely theoretical and does not contain experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper is purely theoretical and does not contain data or code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper is purely theoretical and does not contain experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper is purely theoretical and does not contain experimental results such
as statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper is purely theoretical and does not contain experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper is purely theoretical and does not involve human subjects, data, or
experiments that would raise ethical concerns addressed by the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is purely theoretical and while this resaerch has applications, this
link is indirect. There are no direct foreseeable negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce or use any data or models, so there are no
associated risks of misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use any external assets such as code, data, or pre-trained
models.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.
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15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, so no IRB approval was
necessary.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: Large Language Models were not used in the development of the core theoreti-
cal methods or proofs presented in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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